Cryptography

Xavier Chassagneux

10th March 2005

Plan

• Presentation

• Symmetric Encryption

• Asymmetric Encryption

• Zero knowledge proofs

Presentation Secure (Encrypted) channel

Presentation Signature

Presentation Other

- Identification
- Integrity
- Involved functions
 - Credit card payment
 - Payment on the Internet
 - Electronical voting system

Symmetric Encryption Cesar Cryptosystem

• Three-letter shift

- Example
 - Plaintext: Attack now!
 - Cyphertext: DWWDFN QRZ!

Symmetric Encryption Perfect Cryptosystem

- Value of letters: A=1, B=2 ... Z=26
- Add key and plaintext.
 - Ex: T+L=20+12=32=26+6=F
- Example
 - Plaintext: This is a secret
 - Key: Lock

THISISASECRET +LOCKLOCKLOCKL

FWLDUHDDQRUPF

Symmetric Encryption Perfect Cryptosystem

- Perfect Cryptosystem
 - Key Lenght = Plaintext Length
 - Cannot decrypt with infinite computation power
- Example
 - Plaintext: DOGS and Key: SURE
 - Cyphertext: DOGS+SURE=WJYX
 - Eve's Key: TUBE
 - Eve's decrypt: **COWS** (COWS+TUBE=WJYX)

Symmetric Encryption Current Cryptosystem

- AES: Advanced Encryption Standard (2000)
 - Mix several times key and plaintext
 - Complex method
 - Knowledge of Plaintext and Cyphertext

Knowledge of the key

Symmetric Encryption Problem

• Alice and Bob : same key

. . .

- How does Alice send the key?
- Alice and Bob : know each other?
- What append when Eve gets the key?

- Two keys
 - Public key
 - Private key
- Use mathematical functions
 - One-way functions
 - Trapdoor
- Need high computation power to deduce the plaintext from the cyphertext (try all private keys)

- Rivest, Shamir, Adleman (1978)
 - Most of algorithms based on RSA
 - Use difficulty of factorization of large numbers
 - Private key: 2 large prime numbers p,q
 - Public key: n=p*q
 - Plaintext m, cyphertext c = f(m,n)
 - Decrypt: m=g(c,p,q)

Asymmetric Encryption Signature

• Asymmetric encryption scheme

Signature scheme

• Encryption: c=f(PK,m)

m=g(SK,c)

- Signature: s=g(SK,m)
- Send m and s
- Verify: f(PK,s)=m

Zero knowledge proof

• Alice wants to prove to Bob, she knows a secret

• Eve spy the communications

• Alice is not sure Bob is honest

Zero knowledge proof Cave allegory

Zero knowledge proof Cave allegory

Zero knowledge proof Cave allegory

Conclusion

• Simple ideas

• Complex mathematical functions

• Large spread